| RSS
深圳电器感厂家
您当前的位置:电感器制造商 > 新闻中心

新型智能加速度传感器的设计

来源:    作者:     发布时间:2015-05-15 12:28:41     点击数:

1 引言

对于传统的加速度传感器而言,由于只具有感知环境,输出模拟信号的功能,应用范围受到了很大限制,譬如,在车辆振动测试行车试验中,就需要配置电脑、数据采集卡等设备。不但设备昂贵,而且由于车辆需要在行驶过程中测试,所以就必须加长信号传输线,既带来了测量的不便,也导致由于外界环境的干扰测试误差的加大。现有的测振仪由于存在着大多价格昂贵,操作复杂,测量精度较低的缺陷,很大程度上限制模压电感器了它的广泛应用。

本文设计了一种智能压阻式加速度传感器,有共模电感效地克服了对于传统加速度传感器的输出特性容易受噪声、温度、电源纹波、湿度等多种因素的干扰,避免了应用场合的局限性,实现了加速度的精确测量。

2 硬件组成

根据智能加速度传感器的使用要求,在硬件电路上主要考虑以下几方面的问题 :尽量采用集成化程度高的芯片,以减小主机体积,满足便携使用要求;采用低功耗的元器件,满足仪器长时间工作要求;选用宽工作温度范围的元器件,满足仪器在户外工作条件。根据以上原则构建了智能传感器的硬件电路,其组成如图1所示。智能加速度传感器主要由敏感元件、信号调理电路、A/D转换器、典型的单片机系统、键盘和电源等组成。

智能加速度传感器的工作原理是 :敏感元件将测点的加速度信号转换为相应的电信号,进入前置放大电路,经过信号调理电路改善信号的信噪比,再进行模数转换得到数字信号,最后送入计算机,计算机再进行数据存储和显示。

2.1 敏感元件

系统采用在目前广泛应用于工业自动控制、汽车及其它车辆、振动及地震测试,科学测量等领域的硅微加速度传感元件,其结构及等效桥式电路如图2所示。

当传感元件以加速度a运动时,质量块受到一个与加速度方向相反的惯性力作用,发生与加速度成正比a的形变,使悬臂梁也随之产生应力和应变。该变形被粘贴在悬臂梁上的扩散电阻感受到。根据硅的压阻效应,扩散电阻电感器厂家的阻值发生与应变成正比的变化,将这个电阻作为电桥的一个桥臂,通过测量电桥输出电压的变化可以完成对加速度的测量[1]。

2.2 P89LPC932单片机系统

作为智能传感器的核心,单片机的选用电感器厂家主要是考虑到智能传感器的测量速度、精度、分辨率和其本身的数据处理能力,并且还要考虑到其与计算机的网络通讯功能。文中选择具有高集成度、低功耗、低成本等特点的P89LPC932单片机作为其作智能传感器的微控制器。它采用高性能的处理器结构,指令执行时间只需2~4个时钟周期,6倍于标准80C51单片机,并且具有增强型UART,具有帧错误检测、自动地址检测和通用的中断功能,I2C和SPI通讯端口。并且P89LPC932还集成了许多系统级的功能,可大大减少元件共模电感参数的数目并降低了系统的成本。同时,考虑到智能加速度传感器在测试过程中需要记录大量数据,单片机系统专门配置了全集成化并且不需设计刷新控制接口的8kB动态RAM2186,作为数据存储器。

2.3 信号调理电路

信号调理主要是指对敏感元件的输出信号进行编码和调制以便获得更好的信噪比,同时也包括信号平均和冗余度、以及自我检查和故障探测系统以便探测敏感元件的任何不正常运转。在敏感元件的输出到放大器的输入端之间,有可能引入工频干扰、静电干扰、电磁耦合干扰和共模干扰等。这样信号就不可避免地带有噪声,严重者会被噪声淹没。因此降低噪声、改善信噪比就显得尤为重要。对于敏感元件,由于输出的电荷量非常小,应将其信号放大。但是当敏感元件输出信号的范围较大时,就不宜用同一增益的放大电路进行放大,否则在输入信号较小时,输出信号将小于一半量程,而输入信号较大时却使放大电路处于饱和状态。同时,由于压阻式敏感元件的电阻除由应变引起之外,也受温度变化的影响,因此也必须考虑温度补偿问题。   鉴于上述考虑,系统选用集成智能传感器信号调理模块MAXl452和外接的电阻、电容组成智能传感器信号调理电路。MAXl452内含一个可编程传感器激励源,一个16阶可编程增益放大器,一个768字节内部EEPROM,四个16位DAC,一个预置运算放大器、一个片上温度传感器。

MAXl452偏移纠正过程如下:初始偏移在信号增益放大器的输入级通过近似偏移设置进行纠正,最终的偏移通过温度指示的176个16位入口查询表地址纠正。片上温度传感器提供一个16位偏移补偿值,这个补偿值的指示分辨率在-400℃~+l25℃约为1.5℃。 1

XY·CN总线是一种低成本的、一点对多点的现场总线通信系统,该系统的优势之一是其无与伦比的节电优势,要发挥该优势,就要注意各部分的电源设计方法。总线电压在12~36 V范围系统均能正常工作,对不同的应

作为成果,我们开发出了效率为92%、重35kg、功率电感线圈间隙为100mm的30kW非接触充电系统(图10)。 图10:与海外产品的性能比较除了效率出色外,2008年度线圈间隙为100mm,扩

从数字信号处理的理论出发,介绍实现的数字滤波、功率因数的计算和谐波谱分析等电力网无功补偿控制器的基本功能,及基于80C196KC MCU的电力网无功补偿控制器。关键词:数字信号处理;数字滤波;无功补偿


上一篇: Android上蓝牙通信功能开发
下一篇:功率电感器
来顶一下
返回首页
返回首页
相关文章
推荐资讯
电感数字转换器
电感数字转换器
相关文章
栏目更新
栏目热门